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Figure 1: We introduce a method for reduced-order shape optimization of 2-manifolds that uses offset surfaces to deform the shape. Left: a
bottle model is generated using offset surfaces with constant offsets. The resulting object is unable to stand. Center: the offsets are optimized
such that the bottle can stand if empty, however, if filled it is unstable. Right: the model is optimized to stand both empty and filled. In order
to account for that, offset surfaces are added inside and outside of the original shape.

Abstract

Given the 2-manifold surface of a 3d object, we propose a novel
method for the computation of an offset surface with varying thick-
ness such that the solid volume between the surface and its offset
satisfies a set of prescribed constraints and at the same time min-
imizes a given objective functional. Since the constraints as well
as the objective functional can easily be adjusted to specific appli-
cation requirements, our method provides a flexible and powerful
tool for shape optimization. We use manifold harmonics to derive
a reduced-order formulation of the optimization problem, which
guarantees a smooth offset surface and speeds up the computation
independently from the input mesh resolution without affecting the
quality of the result. The constrained optimization problem can
be solved in a numerically robust manner with commodity solvers.
Furthermore, the method allows simultaneously optimizing an in-
ner and an outer offset in order to increase the degrees of freedom.
We demonstrate our method in a number of examples where we
control the physical mass properties of rigid objects for the purpose
of 3d printing.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: geometry processing, geometric design optimization,
shape optimization, reduced-order models, physical mass proper-
ties, digital fabrication

1 Introduction

Today’s geometric modeling software (e.g., Blender) allows for in-
teractive design or customization of 3d geometric shapes, and many
of them can now be fabricated at home using a low-cost 3d-printer.
However, most such items are created in an ad-hoc fashion, i.e.,
their geometric and physical aspects are usually assumed intuitively
or determined empirically with a series of trial-and-error iterations.
While this might work well in some cases, it can also turn into a
tedious and especially a costly procedure. For this reason, in the
approaching age of personal digital fabrication, there is a growing
demand for computational tools that not only enable ordinary users
to design and 3d-print their everyday objects, but also allow them
to optimize their designs for practical usability.

In this paper, we provide a novel method for shape optimization of
geometric objects defined by 2-manifold surface meshes. The par-
ticular problem we are dealing with is to find a new shape that is
as similar to an input shape as possible, but which at the same time
satisfies various global goals. An example of such a goal is depicted
in Figure 1: the bottle is intended to stand upright in a desired posi-
tion when filled, however, it would fall over given its current shape.
In order to prevent this, our method automatically adjusts the shape
of the object, but simultaneously, it tries to preserve its volume,
smoothness, and the overall detailed appearance.

Technically, we formulate this task as a continuous constrained
shape optimization problem, which balances shape preservation
against given design goals. We express the shape using offset sur-
faces—a simple yet powerful technique where the surface is param-
eterized by a vector of offset values applied to each vertex in a cer-
tain direction. This parameterization allows deforming the surface
both locally and globally, depending on the chosen displacements.
We describe the details in Section 4.

Since we want to preserve the characteristics of the input shape
under deformations as well as possible, we favor displacements of
the interior surface of the object if feasible, and penalize displace-
ments of the outer surface explicitly. Additionally, and most impor-
tantly, we apply only low-frequency changes to the shape, which is
perceptually less noticeable than high-frequency modifications, but
still has a large influence on global properties, such as the object’s
volume and thus mass.
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Figure 2: Overview of our processing pipeline. The input is a shape S and a desired goal, e.g., stable standing in a given pose. In the
preprocessing stage, a set of manifold harmonic basis functions Γk, a contracted skeleton mesh S̆, and a vector field V are computed. In the
next stage, the surfaces are optimized with respect to the given goals f and constraints gi, and finally, an output shape S is generated.

In order to account for these requirements, we decompose the ge-
ometry of the input shape into its particular spectral bands using the
manifold harmonic basis [Vallet and Lévy 2008]. In our context,
this representation turns out to be remarkably versatile: by project-
ing the surface offsets into a subspace of this basis, we obtain an
efficient representation of low-frequency modifications that, at the
same time, leave high-frequency details largely intact. Moreover,
this approach also serves as an intrinsic regularizer that greatly low-
ers the number of degrees of freedom, turning out to be a powerful
order-reduction technique of the otherwise highly underdetermined
optimization problem. We provide the details in Section 5.

Our proposed solution is fast, lightweight, numerically stable, and
easy to integrate into common 3d modeling software, making it well
suitable for practical optimization of global shape properties: for in-
stance, enforcement of mass moments [Bächer et al. 2014] or struc-
tural optimization [Lu et al. 2014]. While the latter usually also
involves the finite-element discretization of the shape and needs to
be evaluated numerically, the former can be expressed as integrals
over the object’s surface. Since these can be elegantly computed
analytically, we utilize them to demonstrate the applicability of our
proposed reduced-order shape optimization approach in Section 6.

In summary, our contributions are the following:

• We provide a flexible and robust novel framework for the con-
tinuous optimization of 2-manifold surfaces, which aims to
satisfy global objectives by displacing an offset surface de-
rived from a given initial shape.

• We provide an elegant and efficient basis-reduction approach
that is numerically robust and speeds up the computation con-
siderably by making the number of optimization variables in-
dependent of the mesh resolution.

• We demonstrate the applicability of our approach by control-
ling the mass properties of a rigid body enclosed between an
inner and an outer offset surface.

2 Related Work

Design Optimization Problems. Design optimization problems
aim at the automatic computation of structural or mechanical de-
signs that suit some desired (global) goals. They have been stud-
ied in computational industrial design as form-finding problems,
as well as in statics and mechanical engineering as structural opti-
mization problems [Haftka and Gürdal 1992]. In computer graph-
ics, recent approaches provide algorithms for improving models
for 3d printing, like the computation of structural stability [Stava
et al. 2012], worst-case structural analysis [Zhou et al. 2013], cost-
effective material usage [Wang et al. 2013], or optimization of both
the strength and weight of printed objects [Lu et al. 2014].

Various methods have been proposed that integrate computational
design into interactive modeling tools in order to solve specific

problems. For instance, interactive systems for various manufactur-
ing planning tasks, like garment editing [Umetani et al. 2011], de-
sign of physically valid furniture [Umetani et al. 2012], articulated
3d-printed models [Bächer et al. 2012], mechanical assemblies, like
toys [Zhu et al. 2012] and various moving characters [Coros et al.
2013; Thomaszewski et al. 2014], or construction of inflatable bal-
loons with desired shapes [Skouras et al. 2012] have been proposed.
Another example is material design, where the specification of a
desired deformation behavior can be given a priori, and the com-
posite material with respective elastic behavior is computed by op-
timization [Bickel et al. 2010]. This approach was also extended to
the construction of balloons with prescribed shape [Skouras et al.
2012], and for the manufacturing of synthetic clones of human faces
[Bickel et al. 2012].

Reduced-Order Models. Order-reduction approaches aim at
lowering the dimensionality of the parametric space of a computa-
tional problem while preserving its input-output behavior as much
as possible. Their goal is in general to gain performance. In the
area of physically based deformation and animation, the idea of
using vibration modes of a body for order reduction has been pro-
posed by Pentland and Williams [1989]. This approach has been
further explored for efficient interactive animation [Kim and James
2009] and shape deformation [von Tycowicz et al. 2013]. In geom-
etry processing, space and surface deformation methods based on
skinning between handles or cages are reduced-order approaches.
The idea is to express the problem with respect to few handles that
define a subspace, and to interpolate or approximate the overall de-
formation [Botsch and Kobbelt 2004; Sumner et al. 2007; Jacob-
son et al. 2011]. In mesh processing, multi-resolution modeling
[Kobbelt et al. 1998] can be seen as an example of order reduction.

Computation of Mass Properties. The computation of global
mass properties has a long tradition in the modeling and CAD com-
munities, since from the beginning of computerized modeling, ex-
act parameters of modeled objects were of great importance for an-
imation, simulation, as well as manufacturing. Two early works
pioneered the idea to utilize Gauss’s Divergence Theorem for the
computation of mass moments of polyhedral objects [Messner and
Taylor 1980], and parametric bi-cubic spline patches [Timmer and
Stern 1980]. Recently, it has been utilized for the optimization of
mass properties of 3d-printed models [Prévost et al. 2013; Bächer
et al. 2014; Christiansen et al. 2015], which we also demonstrate in
this paper.

3 Problem Formulation
In this section we present the general concept of our shape opti-
mization approach. The basic idea is to interpret the shape as a
solid enclosed between two surfaces, where each can be deformed
by the application of offsets with spatially varying thickness.

Definitions and Notation. As input to our method, we expect a
3d shape represented as a closed oriented 2-manifold surface S =



(X,T), which in practice is a triangle mesh composed of n vertices
x ∈ X and a set of triangles T. Usually, the surface is the boundary
of a solid body. Alternatively, the input can be an inner and an outer
surface enclosing a solid between them.

Depending on the desired optimization task, our method can output
a single offset surface or two complementary offset surfaces, one
oriented to the outside and one to the inside of the input shape,
where we denote the outer one as S, the inner one as S, or both
together as S. For simplicity, we explain the concepts by using the
outer surface S, except where both surfaces are involved. Figure 2
provides an overview.

Offset Surfaces. Each output surface is created by adding an
offset value δ in a direction v at each surface vertex x, such that
x = x + δv, where v ∈ V is a direction vector from a vector field
V, δ ∈ R is a scalar that provides the magnitude and the sign of
the shift, and x ∈ X is a vertex of the offset surface S. One ob-
vious choice for V would be the surface normal field N, however,
general offset surfaces are not limited to this choice, and we use a
vector field derived from iterative surface contraction as described
in Section 4.

In the following, the vertices x of a mesh are organized in a ma-
trix X, displacement vectors v in V, and the scalar offsets δ in the
vector δ.

Optimization Problem. Assuming a given vector field V, our
goal is to find the n optimal offsets δ such that the shape satis-
fies a given objective. In order to remain general, we first define a
template functional for the resulting optimization problem as

ES = min
δ
f(δ) s.t. gi(δ) 6 0 and δl � δ � δu , (1)

where f is the objective function, gi are additional hard equality
and/or inequality constraints, and δl and δu are lower and upper
boundary constraints. For instance, f could be the goal to lower the
z-position of the center of mass of an object, and g could be the con-
straints to keep the center of mass in a certain xy-region. Boundary
constraints are needed to prevent offset surfaces from intersecting
each other or from reaching other implausible values.

The functions f and gi are usually non-linear in the deformation of
the surfaces, making the problem a non-linear programming task
(NLP), which can be generally approached with existing standard
numerical routines. However, a significant disadvantage of this for-
mulation is that the problem is highly underdetermined, i.e., there
usually exist many offset surfaces that satisfy the equation. Even
worse, the number of offsets δ equals the number of vertices (i.e.,
n), and therefore it is high-dimensional and scales badly with in-
creasing mesh resolution. In other words, the problem is redun-
dant and expensive to solve, hence, barely suitable for practical
purposes.

As a major contribution of this paper, we introduce a reduced-order
formulation that provides a remedy for these issues. Our solu-
tion is to project the problem onto a lower-dimensional basis de-
termined by manifold harmonics [Vallet and Lévy 2008], where we
can solve it more efficiently using standard numerical routines—
independently of the number of input vertices. In Section 5 we
present the details of this approach.

4 Offset Directions and Bounds
One significant problem of offset surfaces for 2-manifolds is that
too large displacements may cause the target surface to penetrate
itself and lose its 2-manifoldness, becoming unusable for practical
applications (cf. Figure 3, middle).

Such self-intersections can be either local or global. Local fold-
overs appear if, at any point of the surface, the orthogonal distance
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Figure 3: Left to right: inner and outer offset surfaces with in-
creasing offset to the original. Middle: note the self-intersections
where offsets get too large. Right: medial axis as a global bound
for maximal offset.

of the offset to the surface becomes equal or higher than the radius
of the maximal principal curvature κmax. Global self-intersections
happen if offsets from distant regions of the surface intersect in the
interior or within concavities. These problems can be approached
using the shape skeleton as the upper bound for the displacements
(cf. Fig 3, right). If it is appropriately chosen, i.e., it approximates
the medial axis, which is the set of all centers of spheres that touch
S in at least two points, and the offsets do not exceed it, both global
and local self-intersections can be avoided.

Shape Skeleton. Since we are working with piecewise linear tri-
angle meshes, in practice, the medial axis is neither easy to compute
exactly, nor is it necessarily smooth at sharp corners. For this rea-
son, we strive for an approximation that is robust to compute and
provides smooth skeletons.

We adapt the idea presented by Tagliasacchi et al. [2012], where the
original surface is contracted iteratively using constrained Lapla-
cian smoothing until it converges to a skeleton S̆. The advantage
of this method over other solutions is that it is much less sensitive
to surface detail and that it provides quite smooth skeleton approx-
imations, even at sharp corners of the input shape (cf. Fig. 4, left).
Recursive application of the contraction scheme results in a mesh
that converges to a one-dimensional curve, but in early contraction
stages, it forms a so-called meso-skeleton S̆, which approximates
the medial surface. That surface is especially useful in the case of
complex objects (cf. Fig. 4, right), since it helps keep a one-to-one
correspondence with the vertices.

Figure 4: Left: Two examples of skeletons with a direct one-to-one
correspondence between outer and inner vertices and the resulting
vector field. Right: two meso-skeletons (cf. Section 4).

4.1 Offset Vectors

Inner Offset Vectors. By keeping track of the correspondences
of the input mesh vertices x to the skeleton vertices x̆, we obtain a
surjective correspondence between S and S̆ (Fig. 4). We can now
derive the vectors for inner offsets as v = v̆/‖v̆‖, with v̆ = (x̆−x).
Please note that these vectors point inwards, and are not necessarily
normal to the surface. However, since they were created by con-
secutive contraction, they are rather smooth and provide naturally
suitable trajectories for surface offsets.

Outer Offset Vectors. For the direction of outer offsets we have,
among others, the choice of taking the outward-pointing normal
vectors v = n of the input mesh, or taking the inverse contrac-
tion vectors v = −v. Usually we favor the latter option, since the



Figure 5: Left: sur-
faces are offset indepen-
dently. Right: the hole
has been constrained to
have no offsets.

contraction vector field is of rather low frequency and thus less sen-
sitive to fine details of the input surface than the normals, which can
exhibit many high-frequency fluctuations.

4.2 Offset Bounds

Maximal Bounds. Given the offset vectors, we can use them to
provide constraints for minimal and maximal displacements δl and
δu. In the case of inner offset surfaces S, we obtain the individual
maximum displacement values as δu =

[
|v̆1| |v̆2| . . . |v̆n|

]T , which
is the ‘safe’ distance to the skeleton. The choice of the outer off-
sets δu is usually not as critical, since we try to keep the shape of
the object as similar to the input as possible. We therefore set it
to a low value, which can be adjusted for particular models indi-
vidually. However, self-intersections can still happen as shown in
Fig. 3, right.

Minimal Bounds. In the case of a double surface S, it is often
of interest to provide a minimal or maximal distance between the
surfaces. For instance, it is often necessary to meet practical fab-
rication considerations, e.g., 3d-printer resolution. However, since
the offset vector field is in general not orthogonal to the surface,
these values cannot be measured directly along it. In order to still
allow for such constraints, we project the desired minimal thickness
values in the normal direction δln onto particular vectors v to get a
minimum offset in direction of the vector v: δl = 1

vTn
δln , where

n is the unit surface normal. Thus, the minimal distances between

S and S along V in both directions are given by δl =
[
δl

T δl
T
]T

.

Geometric Bounds. An additional option we provide are explicit
geometric constraints that allow forcing selected regions to desired
offsets. Technically, we accomplish this by overriding the selected
offsets δ̂ ⊂ δ by setting them to desired values. Especially, by
setting δ̂ = 0, regions obtain no displacement, which is of interest
if the surfaces S and S should be forced to coincide, which creates
openings without affecting the volume (cf. Figure 5).

Offset Penalty. In order to preserve the visible shape, outer off-
sets could be suppressed by adding their squared sum to the objec-
tive, weighted bywp: wp‖δ‖

2
2. Moreover, this type of penalization

could be applied to any other subset of the displacements δ, or used
as regularization, as discussed in Section 7.1.

5 Order Reduction
In this section we introduce an efficient order reduction for the op-
timization problem stated in Equation (1) by transforming it into a
spectral representation denoted as manifold harmonics.

5.1 Manifold Harmonics

Essentially, manifold harmonics resemble the bases of the Fourier
transform on meshes with arbitrary topology [Taubin 1995], and
exhibit a set of advantages we can exploit: first of all, if appropri-
ately chosen, they are orthogonal, making the basis transformation
a numerically stable operation. Second, they are smooth, allowing
for well-defined continuous optimization. Finally, in terms of an ar-
bitrary manifold mesh, they have the advantage that they “encode”
the geometry and topology of the original object [Levy 2006], such
that their extrema usually lie at geometrically exposed locations and
capture the intrinsic symmetry of the shape [Zhang et al. 2010]

Discrete Laplace-Beltrami. The manifold harmonic functions
can be computed as the eigenfunctions of the Laplace-Beltrami op-
erator ∆S of the input surface. This operator is a generalization of
the Laplacian operator to 2-manifolds and allows performing differ-
ential operations on surfaces. Generally, it is defined as the diver-
gence of the gradient, i.e., the sum of second partial derivatives of
a parameterized surface. However, in a discrete setup, the Laplace-
Beltrami operator L can be derived as the umbrella operator directly
from the mesh, without the usage of a parameterization.

In the literature, there are a number of propositions how to dis-
cretize the differential operator. In our implementation, we follow
Pinkall and Polthier [1993] due to its symmetry:

Li,j =


ωi,j if (i, j) ∈ E∑

k∈N(i) −ωi,k if (i = j)
0 otherwise ,

(2)

where E denotes the set of edges, and N(i) is the set of first-order
neighbors of vertex i. The weights ωi,j are computed using the
geometric properties of the mesh, in particular:

ωi,j =
1
2
(
cotϕl

i,j + cotϕr
i,j

)
,

where ϕl
i,j and ϕr

i,j are the angles opposite to the edge (i, j) in the
left and right incident triangles respectively.

Harmonic Basis. We have chosen this operator because it is sym-
metric and positive semi-definite, thus, respecting the spectral the-
orem, all its eigenvalues λi are real and non-negative (i.e., λi > 0),
and all eigenvectors γi are mutually orthogonal, and can be further
orthonormalized such that ∀ i : ‖γi‖2 = 1. They can be computed
by the diagonalization L = ΓΛΓT , where the diagonal entries of
the matrixΛ are the eigenvalues λi, such that λ1 6 λ2 6 . . . 6 λn,
and the columns of the matrix Γ =

[
γ1 γ2 . . . γn

]
are the respec-

tive eigenvectors. From the functional analytic point of view, the
eigenvectors become the eigenfunctions, and since they satisfy the
Laplace equation, they are denoted as harmonics.

The basis functions
[
γ1 γ2 . . . γn

]
correspond to the lowest to

highest frequencies of the input mesh, thus the first few functions
capture the global shape appearance and the remaining ones cap-
ture the details. For this reason, a low-frequency base surface can
be well approximated using only the first few components.

In practice, the computation of the full diagonalization of a large
matrix is a significant computational challenge. However, since we
are only interested in a reduced set of k bases, there exist a num-
ber of efficient algorithms that can be utilized for our purpose very
well. We have used the implementation from the ARPACK library
[Lehoucq et al. 1998]. An additional advantage is that we only need
to compute them once per mesh.

5.2 Reduced Optimization Problem

The main idea of order reduction is to represent the offsets δ in the
manifold harmonic basis. This allows us to significantly reduce the
order of the problem. Simultaneously, adjusting the low frequencies
only enables us to perform desired changes of the overall shape
while still preserving the local details.

In order to achieve this, we express the offset surface S as a linear
combination of a set of k eigenfunctions Γk =

[
γ1 γ2 . . . γk

]
:

xi = xi +

k∑
j=1

αjγij vi ,

where αj are elements of the unknown coefficient vector α ∈ Rk,
and the problem now reduces to finding that vector. This drastically



lessens the degrees of freedom of the problem, and also serves as an
implicit regularization (discussed in more detail in Section 7). We
can now write the optimization from Equation (1) in terms of α as

ES = min
α
f(α) s.t. gi(α) 6 0 and δl � Γkα � δu , (3)

which has the benefit of resulting in k � n optimization un-
knowns. Please note that this number is independent of the mesh
resolution—only the number of chosen harmonic bases is relevant.
In our experiments, most offset meshes can be approximated ade-
quately with k 6 36 basis vectors (cf. supplemental material).

The geometric constraints can be enforced by truncating the cor-
responding basis functions, such that ∀j : γij = 0. The result is
that during the optimization, the changes in α have no effect on
the selected vertices vi. Hence, we can also relax the respective
box constraint to δli = −∞ and δui = +∞ such that they would
be able to develop freely. While the surface loses the smoothness
at those vertices, the final result is not affected, since we override
them with the desired values.

Finally, the harmonic basis also allows us to provide an option to
penalize the outer displacements in order to preserve the original
shape of the object. We do this by minimizing the squared mag-
nitude of the coefficient α1, where we weight the strength of the
penalty with wp:

ES = min
α

(
f(α) +wpα

2
1

)
.

Since the first element corresponds to the constant zero-frequency
(DC element), it changes the volume, while the other components
contain the detail, but have zero mean.

5.3 Analytic Gradient

Given an objective function f that can be differentiated w.r.t. the
surface vertices X analytically, our formulation of shape optimiza-
tion using offset surfaces allows for a closed-form analytic compu-
tation of the gradient of the functional in Eq. (3). Thus, a major
advantage of our formulation is that the gradient can be calculated
by repeated application of the chain rule as

∇ES =
∂f

∂α
=
∂f

∂X

∂X

∂δ

∂δ

∂α
,

where X =
[
x1 y1 z1 x2 y2 z2 . . . xn yn zn

]T are the n vertices
of the original surface concatenated into a 〈3n× 1〉 vector, and δ
is the 〈n× 1〉 vector of corresponding scalar displacements.

The derivatives ∂f/∂X with respect to surface vertices X result in a
〈1× 3n〉 vector. The derivatives of ∂X/∂δ result in a sparse matrix
of the size 〈3n× n〉, which contains in each column the respective
displacement vector v. Eventually, the derivatives ∂δ/∂α are the
harmonic basis vectors Γk, which form a 〈n× k〉 matrix. The final
partial derivatives of the objective ∂f/∂α with respect to α thus
reduce to a 〈1× k〉 sized vector. The derivatives for the constraint
functions gi can be computed accordingly.

Please note that the given matrix sizes are with respect to only one-
sided displacement with k coefficients. For two-sided offsets, the
matrices need to be extended accordingly, which is explained in
more detail in the supplemental material.

6 Applications and Results

6.1 Control of Mass Properties

We demonstrate the application of our method by optimizing mass
properties of a solid. In particular, the physical mass moments of a
rigid body are attributes that determine how an object behaves under

the influence of mechanical forces, e.g., gravity, torque, etc. The
moments of zeroth, first, and second order of a rigid object defined
by its surface S describe the total mass m(S), the center of mass
c(S), and the symmetric 〈3× 3〉 tensor of inertia I(S), respectively.
We summarize these 10 properties as

P(S) =
[
m cx cy cz Ixx Iyy Izz Ixy Iyz Izx

]T . (4)

The tensor of inertia I(S) is symmetric and contains the quadratic
terms, denoted as moments of inertia, on the diagonal, and the
mixed terms, denoted as products of inertia, on the off-diagonals.
Please refer to the supplementary material for a derivation and fur-
ther details. While the physical mass moments are integrals over
the volume of the solid, uniform mass density and Gauss’s Diver-
gence Theorem allow evaluating them as functions of the boundary
surface of the solid S = {X,T}, which we also describe in detail in
the supplementary material.
The object’s mass m relates to its volume V by m = ρV , where
ρ is the material density coefficient. Without loss of generality,
for solid objects with uniform mass density distribution, we can
assume ρ = 1. Note that in the following, all mass densities are
given relative to the object mass density, i.e., all are divided by the
mass density of the object, and the density of air is set to 0.

6.2 Objectives
We provide a number of specific sets of objectives and constraints
in order to fulfill certain tasks that require the control of mass prop-
erties. Often, we want to control the static and rotational stability
of shapes. These goals can be specified by placing the object in the
origin of the world coordinates in the desired pose.

model © http://www.modelplusmodel.com  model © http://archive3d.net  Horse (by Gian Lorenzo)

Figure 6: Examples of static stability optimization. The dashed
lines indicate the center of mass of the entire solid, the thick lines
the ones of the shell after optimization.

Static Stability. An object stands stably if the orthogonal pro-
jection of its center of mass c on the ground plane lies within the
convex hull defined by the object’s ground contact points. We place
the object in the xy-plane such that the centroid of the convex hull
is in the origin, and we optimize the following objective:

f(α)static := c
2
x + c2

y + cz ,

gi(α)static := (cx + cy)
2 − (r − ε)2 6 0 , cz > 0 ,

(5)

where r is the radius of the largest inscribing circle of the convex
base polygon, and ε is a safeguard (cf. Figure 6).

Static Stability under Storage. A storage container alters its
mass properties when the initial void is filled with the stored
medium. To ensure static stability in both states, we optimize both
the empty and the filled container. Assuming a uniform mass den-
sity ρ of the stored medium, the mass of the empty and filled con-
tainer is given by mempty = m(S) and mfull = mempty + ρV(S)
respectively. The center of mass of the empty and filled container
is given by

cempty = c(S) and cfull =
memptycempty + ρV(S)c(S)

mfull
. (6)



We now optimize these centers of mass simultaneously by applying
objective (5) to both. Figure 1, right, depicts a leaning bottle that
has been optimized to stand stable if filled with water.

original model © http://cyberware.com

Figure 7: A roly-poly toy designed with our method. The center of
mass (black dot) is placed below the center of the hemisphere at the
bottom of the object (red dot). When pushed, a righting moment
corrects the pose (left) until the equilibrium position is reached
(center). A rendering and a fabricated replica is shown on the right.

Monostatic Stability. An object is called monostatic if it has only
a single stable resting position. If perturbed, its shape and inner
mass distribution produces a righting moment that returns it to this
equilibrium position. A common application of this principle are
roly-poly toys. As shown in Figure 7, they commonly consist of
a hemispherical element at the bottom and a figurine on top. The
correct righting behavior is obtained when the center of gravity c
lies below the hemisphere center, so we optimize a variant of (5):

f(α)static := cz ,
gi(α)static := { cx , cy } = 0 , cz − r + ε < 0 ,

(7)

where r denotes the radius of the hemisphere and ε acts as a safe-
guard against tolerances in the fabrication process, which could
raise a center of gravity that is placed just below the hemisphere
center (cf. Fig. 7).

model © http://www.cgtrader.com (DrGlassDPM)

Figure 8: A spinning turtle model. Left, the original model, right,
an object optimized for spinning.

Rotational Stability. An object rotates stably about an axis if the
axis is its smallest or largest principal axis of inertia [Goldstein et al.
2002]. Hence, we place the object in a coordinate frame in a pose
we want it to spin, with ~z as the up and rotation axis (see Fig. 13).
Then we optimize the body such that its principal axis equates the
rotation axis with moment Ic = Izz, and such that the cross terms
Ixz and Iyz vanish. Here we adapt the objective as recently pro-
posed by Bächer et al. [2014]:

f(α)inertia := mcz +

(
Ia

Izz

)2

+

(
Ib

Izz

)2

,

gi(α)inertia := { cx , cy , Ixz , Iyz } = 0 , cz > 0 .
(8)

In general, the remaining moments of inertia Ixx and Iyy do not
coincide with the coordinate frame axes. We obtain the principal
axis moments Ia and Ib as the eigenvalues of the 〈2× 2〉 upper-left
part of the inertia tensor I:

{ Ia , Ib } =
1
2

(
Ixx + Iyy ∓

√
I2xx + 4I2xy − 2IxxIyy + I2yy

)
.
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Figure 9: An object optimized for buoyancy in a liquid of a specific
density ρ. By adding a void with appropriate shape and volume
inside the object, buoyancy can be achieved. Left: input model,
center: optimized shape, right: 3d-printed example.

Specific Volume and Buoyancy. Our method allows the cre-
ation of objects whose inner void should exhibit a specific volume.
Given a target volume V , its difference to the volume of the void is
given by (V − V(S)) and can be penalized either in the objective
function or enforced by a constraint.

A more complex application of this capability is to control the buoy-
ancy of an object. To ensure static stability of an object that is
immersed in a fluid, its gravitational and buoyant forces should
be at equilibrium in the desired orientation of the object. We as-
sume for simplicity that our object is incompressible and com-
pletely submerged in a fluid with a uniform mass density ρ < 1
with downward gravity g = −g~z. A buoyant force V(S)g~z is
exerted on the center of buoyancy cbuoy = c(S), while the grav-
itational force −m(S)g~z acts at the center of gravity c = c(S).
Equilibrium is established if the magnitudes of the forces cancel,
i.e., 0 = V(S)ρg − m(S)g = (ρ − 1)V(S) + m(S), and if no
torque is produced on the object, i.e., cbuoy,x = cx and cbuoy,y = cy.
Furthermore, a stable equilibrium is only reached if cbuoy,z > cz.
Otherwise, the object would flip upside down. For a floating object,
we consequently optimize

f(α)buoyancy :=
(
(ρ− 1)V(S) +m(S)

)2
,

gi(α)buoyancy := { cx − cbuoy,x , cy − cbuoy,y } = 0 ,
cz < cbuoy,z .

(9)

A result of an object optimized for buoyancy is provided in Fig. 9.

6.3 Implementation

Implementation. We implemented the optimization framework
using MATLAB 2014a and C++, where we utilized the LIBIGL
library [Jacobson et al. 2014] for some computations. For the
computation of skeletons we used the CGAL implementation of
[Tagliasacchi et al. 2012]. For the computation of the eigendecom-
position, we utilized the sparse function eigs, which implements
the ARPACK routines [Lehoucq et al. 1998]. For the constrained
NLP-problem, we used the MATLAB Optimization Toolkit using
fmincon, in particular the constrained medium-scale active-set
solver, however, it also works well with the large-scale interior-
point solver, or could be easily plugged into another numerical rou-
tine. Our experimental MATLAB/C++ code will be available on
the paper web page.

Timings. The preprocessing timings lie generally in the range of
several seconds. In particular, the convergence time of the skeleton
depends on the chosen parameters, but it usually ranges between
5−30s. The longest computation we observed was the Horse model
(cf. Figure 6, 86k vertices) with 84s. The computation of the sparse
Laplacian and its eigenvectors depends on the chosen k, but even
for large meshes (e.g., the Horse with k = 36), it takes less than
4s to compute. The optimization time for our examples is usually
between a few seconds in simple cases (e.g., Bottle in Figure 1), up
to few minutes for more complex examples (e.g., Horse 3.8min).
Timings were taken on an Intel(R) Core(TM) i7-3770K CPU@3.50



GHz with 32 GB RAM running Windows 8; please refer to the
supplemental material for detailed timings.

Fabrication. We have 3d-printed several models using different
3d-printers: a MakerBot Replicator 2 for early testing, a Dimen-
sion uPrint Plus for prototyping and most of the results, and finally
also an Objet Eden 260 for poly-jet prints for high-quality results.
Since the FDM prints are in general not entirely watertight, we im-
pregnated them with a clear-coating material. Our models worked
well with these printers, however, usually they needed to be cut
into pieces in order to be printed with support material, and glued
together after a base-bath. We performed the cutting manually us-
ing a standard modeling software, but also automatic methods for
the partitioning of objects [Luo et al. 2012] are available.

7 Discussion

7.1 Harmonic Basis Functions
Basis Dimensionality. The number k of basis-functions allows
a trade-off between reduced runtime and increased robustness on
the one hand and a solution closer to a reference optimum on the
other. For an evaluation, we compare the reduced-order results to a
straightforward shape optimization of each individual vertex.
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Figure 10: Number of used basis functions k compared to the ob-
jective value (orange), processing time (blue), and a reference ob-
jective (brown). The reference is fref = 11.28 and tref = 87s. The
object has n = 750. The results with a low number of basis func-
tions (shaded region) did not converge within the posed constraints.

In Figure 10, we plot the value of the objective f versus increas-
ing values of k measured on the object shown in Figure 11 with
n = 750 and the objective (8). If too few basis functions are cho-
sen, the constraints cannot be fulfilled, such that a solution does
not exist (shaded area). However, already a small number of modes
(k = 34) permits a solution that is remarkably good and fast to ob-
tain. Thus, a further increase in k only yields minute improvements
while increasing the computation time.
The speedup of our algorithm is in any case significant. If we opti-
mize the shape with 34 basis functions (the dashed vertical line in
Fig. 10), we obtain a very good approximation within 0.44 seconds,
compared to 87 seconds for the full solution, which is a speedup of
2 orders of magnitude. Indeed, in practice, the speedup for large
models (i.e., n >> 1000) is even higher, since the full per-vertex
computation of such models takes hours or even days.
We have also computed the optimal shape using a full set of basis
functions (k = n). We obtained the same optimality value (f =
11.27) at a runtime of 93s, and a surface very similar to the one
delivered by the full solution in the Euclidean space (cf. Figure
11, right). This is to be expected, since the problem is in theory
the same, the differences of the final geometry are due to numerical
approximation errors. Thus, the general conclusion is to choose
the number k low; only sufficiently high to express the shape with
the necessary number of degrees of freedom needed to fulfill the
constraints.

full k=34 k=94 k=n

f=11.3 f=14.6 f=12.0 f=11.3
t=87s t=0.4s t=4.4s t=93s

Figure 11: Results of the evaluation in Figure 10 with n = 750.
Left to right: result of the full method, results with increasing k.

Regularization. An important aspect of our solution is an im-
plicit regularization. Since the full problem is highly underdeter-
mined, there exist many solutions, and the finally obtained one
is not necessarily very smooth, as depicted in Figure 11, left.
This problem could be approached with Tikhonov regularization
by adding an additional termwr‖δ‖2

2 to the objective, which would
favor small displacements and make the problem fully determined,
however, at the cost of its size and computation time. Additionally,
we found the results still not smooth. In contrast, using a small
number of harmonics allows us to express the displacement with
low-frequency basis functions, such that each approximated result
provides a smooth surface in the Laplacian sense.

Choice of the Basis. We have chosen the Laplacian as in (2)
since it reflects the object’s geometry, and it is symmetric positive
semi-definite. However, there are other possible approximations of
manifold harmonics, as for instance discussed by Vallet and Levy
[2008]. We have experimented with them and found that a more
accurate discretization of the operator results in a better shape ap-
proximation and faster convergence. Thus, a detailed investigation
of this issue would be a possible direction for future work.

Surface Detail. A final point to note is that the outer offset sur-
faces themselves retain the detail of original surfaces. This is be-
cause only the offsets are projected to a low-frequency space, not
the surface itself.

7.2 Comparisons

In Figure 12, we show a comparison to the state-of-the-art in the
form of Make-It-Stand [Prévost et al. 2013], which we use without
outer-surface deformation by removing the scaling and deformation
terms and performing the plane-carving algorithm only. We also
set the wall thickness in our case to a similar distance as the lowest
possible 1 voxel in the other method. The figure shows that in this
case, our method indeed approximates the interior void better and
provides slightly more stable mass properties:

our: f = 2.52 , m = 21.7 , c = [ 0.63 0.0 2.13 ] ,
ref: f = 2.96 , m = 26.1 , c = [ 0.78 0.0 2.35 ] .

original model  © ETH Zurich, used with permission

Figure 12: Comparison with the method of [Prévost et al. 2013]
without outer deformation of the shape. Both results achieve static
stability as evidenced by their fabricated replicas (right), however,
our method provides a slightly better result.

In Figure 13 we show a comparison of our method with the one of
Bächer et al. [2014]. We set k = 24, and also in this case only
the optimization of the interior has been used in both cases. Our
method converged in 6.8s. Below, we provide the mass moments



of both results, where we can see that we achieve nearly identical
values as the reference, while providing a smooth inner surface:

our: f = 11.4 , P = [ 1.07 | 0 0 1.13 | 0.35 0.41 0.52 | 0 0 0 ],
ref: f = 8.16 , P = [ 1.20 | 0 0 1.13 | 0.34 0.36 0.57 | 0 0 0 ].

original model  © Disney Research, used with permission

Figure 13: Comparison with Spin-It [Bächer et al. 2014]. The
input unstable spinning top is optimized using their (far left) and
our method with k = 24 (center left). Right: fabricated results.

7.3 Limitations

Deformation Limitations. Other approaches [Prévost et al. 2013;
Bächer et al. 2014] utilize linear blend skinning (LBS) with
bounded biharmonic weights [Jacobson et al. 2011] for the adjust-
ment of the objects’ shapes. Using this type of deformation with
well-defined similarity transformations (scale, translation, rotation)
enables their methods to deform the model in a meaningful manner
with more degrees of freedom than given by our outer displacement.
Additionally, careful manual placement of control handles enables
the user to influence the deformation semantically, i.e., by adding
handles to the extremities of articulated objects, the system can ex-
plicitly account for their pose [Prévost et al. 2013]. In contrast,
even if the basis functions have global support, our displacement
can deform the shape only along a predefined vector field, which
is a much more restricted shape-editing operation, and it cannot
change the objects’ pose (cf. Figure 14).

Boundary Constraints Limitations. The presented optimiza-
tion pipeline is in general very robust. However, the algorithm
also depends on the quality of the provided skeleton. We have
experimented with several approaches, and found the solution of
Tagliasacchi et al. [2012] to be the most reliable, since it provides
an approximation of the medial surface, denoted as meso-skeleton,
that is a trade-off between the medial axis and a smooth 1d skele-
ton. Nonetheless, their approach still requires tuning of parameters.
This issue is crucial, since the offset surface is shifted along vectors
toward the skeleton, hence there must exist a surjective (in the con-
tinuous sense) mapping between S and S̆. If the vectors v̆ intersect
or cross the boundary in any way, our method can produce artifacts.
This can happen at fine details, where the skeleton approximates
the surface too roughly, as in the case of the fingers of a hand.

Design Space Limitations. Our solution space is limited by the
degrees of freedom provided by the k manifold harmonics, thus
any better optimum that lies outside of this space cannot be reached.
Moreover, the usage of a constant shape skeleton as an upper bound
for inner displacements additionally limits the design space, such
that potentially valid solutions that require crossing of the medial
axis cannot be reached. Finally, problems where multiple voids are
necessary to achieve a good optimum are not well served with our
algorithm. Space carving methods that perform global topology
optimization are potentially more flexible for problems where mul-
tiple voids are needed, since their solution space is generally bigger
and not limited to one surface.

7.4 Fabrication Considerations

Print Time and Support Material. We observed that smooth
models need less support material and have lower print times than
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Figure 14: Example of static stability optimization of a complex
model. From left to right: meso-skeleton, outer shape with center
of mass, inner surface only, inner and outer surface optimization.
The inner surface result has a too thin wall to be printed. The outer
surface offset solves this problem.

the voxelized models for FDM. This is basically due to the fact
that voxel-bottoms that are parallel to the ground plane need full
support, while smooth surfaces are self-bearing up to a certain de-
gree. Moreover, the total distance traveled by the printer head is
shorter on smooth curves than Manhattan-distance voxels. In a di-
rect comparison with the work of Prévost et al. [2013] using the
results shown in Figure 12, our approach cuts both the support ma-
terial and the print time roughly by half. Further details can be
found in the supplementary material.

Material Density Issues. In practice, we found that the material
density values as presented by manufactures (e.g., ρABSplus = 1.04)
do not necessarily apply to the printed models. This is due to the
fact that FDM-fabricated solids have a large number of micro-holes
integrated in the massive. These holes can be filled with air or water
(especially after base-bath for support dissolution), changing the
actual density of the mass. This problem has also been addressed by
Christiansen et al. [2015]. We resolved it by coating wet models,
which stabilized their density.

8 Conclusions
We have presented a novel method for shape optimization of an
input object represented by a 2-manifold in order to attain given
global specifications. The key idea was the utilization of offset sur-
faces, whose parameters are determined by continuous constrained
non-linear optimization, such that the enclosed rigid body realizes
a given objective. We ensured the computational feasibility of our
method by reducing the order of the problem by solving it in a suit-
able lower-dimensional subspace, given by the manifold harmonic
basis. Apart from increased numerical robustness due to an inherent
regularization, we achieved a reduction of the computation times of
at least of 2-3 orders of magnitude using common off-the-shelf nu-
merical solvers in our implementation. We documented the versa-
tility of our approach by optimizing a range of physical properties
of rigid objects, and we provided a comparison with previous meth-
ods for shape optimization. In the future, we intend to integrate our
technique in popular modeling software tools to assist users in the
creation of fabrication-ready customized models.
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